-->
THESMARTWINDOW THESMARTWINDOW
دروس

آخر الأخبار

دروس
دروس
جاري التحميل ...
دروس

Venus planet

                           Venus planet     


Venus is the second planet from the Sun, orbiting it every 224.7 Earth days.[12] It has the longest rotation period (243 days) of any planet in the Solar System and rotates in the opposite direction to most other planets. It has no natural satellites. It is named after the Roman goddess of love and beauty. It is the second-brightest natural object in the night sky after the Moon, reaching an apparent magnitude of −4.6, bright enough to cast shadows at night and, though rare, occasionally be visible in broad daylight.[13][14] Because Venus orbits within Earth's orbit it is an inferior planet and never appears to venture far from the Sun; its maximum angular distance from the Sun (elongation) is 47.8°.


Venus is a terrestrial planet and is sometimes called Earth's "sister planet" because of their similar size, mass, proximity to the Sun, and bulk composition. It is radically different from Earth in other respects. It has the densest atmosphere of the four terrestrial planets, consisting of more than 96% carbon dioxide. The atmospheric pressure at the planet's surface is 92 times that of Earth, or roughly the pressure found 900 m (3,000 ft) underwater on Earth. Venus is by far the hottest planet in the Solar System, with a mean surface temperature of 735 K (462 °C; 863 °F), even though Mercury is closer to the Sun. Venus is shrouded by an opaque layer of highly reflective clouds of sulfuric acid, preventing its surface from being seen from space in visible light. It may have had water oceans in the past,[15][16] but these would have vaporized as the temperature rose due to a runaway greenhouse effect.[17] The water has probably photodissociated, and the free hydrogen has been swept into interplanetary space by the solar wind because of the lack of a planetary magnetic field.[18] Venus's surface is a dry desertscape interspersed with slab-like rocks and is periodically resurfaced by volcanism.


Surface geology

Image is false-colour, with Maat Mons represented in hues of gold and fiery red, against a black background
False-colour image of Maat Mons with a vertical exaggeration of 22.5
Much of the Venusian surface appears to have been shaped by volcanic activity. Venus has several times as many volcanoes as Earth, and it has 167 large volcanoes that are over 100 km (62 mi) across. The only volcanic complex of this size on Earth is the Big Island of Hawaii.[30]:154This is not because Venus is more volcanically active than Earth, but because its crust is older. Earth's oceanic crust is continually recycled by subduction at the boundaries of tectonic plates, and has an average age of about 100 million years,[36] whereas the Venusian surface is estimated to be 300–600 million years old.[28][30]
Several lines of evidence point to ongoing volcanic activity on Venus. During the Soviet Venera program, the Venera 9 orbiter obtained spectroscopic evidence of lightning on Venus,[37] and the Venera 12 descent probe obtained additional evidence of lightning and thunder.[38][39] The European Space Agency's Venus Express in 2007 detected whistler waves further confirming the occurrence of lightning on Venus.[40][41] One possibility is that ash from a volcanic eruption was generating the lightning. Another piece of evidence comes from measurements of sulfur dioxide concentrations in the atmosphere, which dropped by a factor of 10 between 1978 and 1986, jumped in 2006, and again declined 10-fold.[42] This may mean that levels had been boosted several times by large volcanic eruptions.[43][44]
In 2008 and 2009, the first direct evidence for ongoing volcanism was observed by Venus Express, in the form of four transient localized infrared hot spots within the rift zone Ganis Chasma,[45][n 1] near the shield volcano Maat Mons. Three of the spots were observed in more than one successive orbit. These spots are thought to represent lava freshly released by volcanic eruptions.[46][47] The actual temperatures are not known, because the size of the hot spots could not be measured, but are likely to have been in the 800–1,100 K (527–827 °C; 980–1,520 °F) range, relative to a normal temperature of 740 K (467 °C; 872 °F).[48]
The plains of Venus are outlined in red and gold, with impact craters leaving golden rings across the surface
Impact craters on the surface of Venus (false-colour image reconstructed from radar data)
Almost a thousand impact craters on Venus are evenly distributed across its surface. On other cratered bodies, such as Earth and the Moon, craters show a range of states of degradation. On the Moon, degradation is caused by subsequent impacts, whereas on Earth it is caused by wind and rain erosion. On Venus, about 85% of the craters are in pristine condition. The number of craters, together with their well-preserved condition, indicates the planet underwent a global resurfacing event about 300–600 million years ago,[28][29] followed by a decay in volcanism.[49] Whereas Earth's crust is in continuous motion, Venus is thought to be unable to sustain such a process. Without plate tectonics to dissipate heat from its mantle, Venus instead undergoes a cyclical process in which mantle temperatures rise until they reach a critical level that weakens the crust. Then, over a period of about 100 million years, subduction occurs on an enormous scale, completely recycling the crust.[30]
Venusian craters range from 3 to 280 km (2 to 174 mi) in diameter. No craters are smaller than 3 km, because of the effects of the dense atmosphere on incoming objects. Objects with less than a certain kinetic energy are slowed down so much by the atmosphere that they do not create an impact crater.[50] Incoming projectiles less than 50 m (160 ft) in diameter will fragment and burn up in the atmosphere before reaching the ground.[51]



التعليقات



تابعوناعلى YouTube

إتصل بنا

جميع الحقوق محفوظة

THESMARTWINDOW

2016